THE PERMIAN SYSTEM IN ROMANIA

ANTONETA SEGhedI, MIHAI POPA, GHEORGHE OAlE and IOANEL NICOLAE

Key words – Permian; sedimentology; paleontology; magmatism; tectonics; Romania.

Abstract – Permian deposits from major tectonic units in Romania (South Carpathians, East Carpathians, Apsenian Mountains, North Dobrogea, Moesian and Scythian Platforms) are mainly developed in continental facies, with molassic characteristics. Red beds are the dominant facies, but basal black and grey shaly deposits are present in the South Carpathians and Apsenian Mountains. In all areas, sedimentation took place mostly in alluvial fan, fluvial and lacustrine systems. Shallow-marine carbonate platform conditions were restricted to the northern part of the Moesian Platform in the Early Permian. Evaporites are associated with the red beds only within the platform.

The sedimentary record of most basins includes volcano-sedimentary sequences. The Permian volcanism was bimodal, with an alkaline signature in the Apsenian Mountains, North Dobrogea and Scythian Platform. The basalt-rhyolite bimodal association typically occurs in the South Carpathians, Apsenian Mountains and the Moesian Platform, while the basalt-trachyte association is found in North Dobrogea and the Scythian Platform.

The South Carpathians (Getic Nappe and Danubian units) yielded by far the most fossiliferous Permian deposits in Romania, the fossil remains being represented by flora (compressed macroflora, microflora), and fresh water fauna (ganoid fishes, ostracods, bivalves). The Apsenian Mountains include deposits yielding flora (silicified woods, microflora), while the North Dobrogea has yielded no fossils to date. The Moesian and Scythian Platforms include faunal remains, but palynological evidence was also found in the latter.

An extensional tectonic setting, related to Late? Permian rifting, is suggested by both field evidence and the geochemistry of the volcanic rocks from the South Carpathians, Apsenian Mountains, Moesian and Scythian Platforms. Typical rift basins are those from the platforms. For North Dobrogea, magmatic associations illustrate the transition from a compressional, post-collisional setting in the Early Permian to a transtensional setting in the Late Permian, related to the tectonic collapse of the Hercynian crust.

I Carpazi meridionali (Falda Getica e unità Danubiche) comprendono di gran lunga i maggiori depositi fossili della Romania, con resti fossili rappresentati da flora (macroflora e microflora) e fauna (pesci ganoidi, ostracodi, bivalvi). I Monti Apuseni includono depositi a flora (legni siliificati, microflora), mentre la Dobrogea settentrionale non ha ancora dato fossili utili per eventuali datazioni. Le Piattaforme Moesia e Scitica contengono resti faunistici; tuttavia, nella seconda di esse è stata anche riscontrata la presenza di elementi palinologici.

1 Geological Institute of Romania, 1, Carasus, Str. 79678 Bucharest, Romania.
2 University of Bucharest, Faculty of Geology and Geophysics, Laboratory of Palaeontology, 1, N. Balcescu Ave., 70111, Bucharest, Romania.
INTRODUCTION

In Romania, Permian deposits are exposed in the Alpine belts (East and South Carpathians, Apuseni Mountains and North Dobrogea orogen), but they are also known from boreholes in the Moesian and Scythian Platforms (Fig. 1). In the East Carpathians, scarce terrigenous sediments over lain by Lower Triassic sandstones are ascribed to the Per mian within the Bucovinian, Sub-Bucovinian and Infrac arpathian Nappes. In the South Carpathians the Permian deposits are recorded in both the Getic and Danubian Nappe systems. The Permian occurrences are confined to the central part of the Apuseni Mountains (Codru and Biharia Nappe systems and Bihor “autochthonous” unit of the Codru Monia, Bihor and Padurea Craiului Mountains).

The Permian sedimentation took place in several basins in the South Carpathians – Resita and Pui (Getic Nappe), Sirinia and Presacina (Danubian units) (Codarcea, 1940; Raileanu, 1953; Stilla & Luta, 1968). Small patches of thin Permian red beds, mostly fanglomerates, initially described as “Verrucano” facies, are scattered locally in the area of the Danubian Window and in the Godeanu outlier of the Getic Nappe (Gherasi, 1937; Pavelescu, 1953).

The Resita Basin exposes the sedimentary cover of the Getic Nappe in the westernmost part of the South Carpathians (Banat region). It is a north-south elongated basin, faulted and folded longitudinally, its deposits belonging to a Variscan (Westphalian A-B-Lower Permian - “Autunian”) and an Alpine cycle (Heittangian-Albian). The Pui area is located within the Hateg Depression (central South Carpathians), which is dominated by Mesozoic and Tertiary deposits.

The Sirinia Basin represents the cover of the Upper Danubian units and lies in the southwesternmost Carpathians (Banat region), mainly within the Almaj Mountains. It is a north-south oriented basin, located eastwards of and parallel to the Resita Basin. The Presacina Basin, oriented north-south, lies eastwards of the Sirinia Basin. Both Danubian basins include products of two main cycles, a Variscan and an Alpine cycle.

Fig. 1 – Location map and distribution of Permian deposits in Romania.
The Permian of the Apuseni Mountains is known in the Codru Nappe System (Djerva, Moma, Finis and Codru Nappes) of the Codru Moma Mountains, as well as in the Biharia Nappe System (Garda and Ariesei Nappes) and the Bihor Unit (Bihor “Autochthonous”) of the Bihor and Padurea Craiului Mountains (Bleahu, 1963; Istocescu et al., 1970; Patrulea, 1972; Bordea & Bordea, 1982; Bleahu et al., 1985; Dimitrescu, 1988). Recent studies (Bordea & Bordea, 1993) revealed the presence of the Lower Permian bioturbated sandstones in the Highis Mountains (southwestern part of the Apuseni Mountains).

In North Dobrogea, Perno-Carboniferous continental sedimentation took place in largely E-W oriented, narrow piggyback basins related to back-arc thrusting (Seghedi & Oaie, 1995 a). The NW-SE elongation of the outcrop area of Carapetit Formation (Fig. 1) is the result of subsequent deformation, and preservation of the Upper Paleozoic sediments in the core of a Kimerian syncline.

An E-W oriented rift basin controlled the Permian sedimentation in the northern part of the Moesian Platform. This was located south of an elongated basement high (Craiova - Bals - Optasi rise) (Paraschiv, 1979), which probably represented a rift shoulder. Other part of the Permian basin occurred in the southern part of the Romanian Moesian Platform and continued southwards into the present-day Bulgarian territory.

The Scythian Basin, bordered and fragmented by major faults, is oriented WNW-ESE and includes the Aluat-Sara-ta and Lower Danube sub-basins (Neaga & Moroz, 1987), separated by tectonic ridges or push-ups.

STRATIGRAPHY

Coarse-grained sediments (Haghima Breccias) in the Bucovinian Nappe of the East Carpathians, consisting mainly of unsorted clasts of metamorphic rocks, were ascribed to the Permian in Rarau and Haghima Mountains, based on palynological associations (Muresan, 1970). In the Bucovinian and Sub-Bucovinian Nappes from the Maramures Mountains, the Haghima Breccia directly overlies the metamorphic basement and is unconformably overlain by red Permian siliciclastics; based on field relations, an Upper Carboniferous and possibly Lower Permian age was ascribed to these rocks, overlain in turn by Lower Triassic sediments (Sandulescu et al., 1989). A Permian age was assigned to the red sandstones and conglomerates from the Infrabucovinian Nappes in the same area, by lithological correlation with the Rozis series from Ukraine (Sandulescu, 1985).

The Variscan molasse deposits of the Resita Basin are subdivided into the Upper Carboniferous (“Westphalian A?B” – “Stephanian”) Resita Formation and the Lower Permian (“Autunian”) Ciudanovita Formation (Bucur, 1991); the latter consists of lower black deposits (the Girloște Member) overlain by red beds (the Lisava Member) (Fig. 2). The Ciudanovita Formation lies conformably (west-

Fig. 2 – Variscan molasse deposits of the South Carpathians. Data compiled from Raileanu (1953), Nastasecu et al. (1981), Stanoiu & Stan (1986) and Stanoiu et al. (1996).
wards) or unconformably (eastwards) on the Upper Carboniferous deposits of the Resita Formation, and it is unconformably overlain by the Lower Jurassic deposits of the Steierdorf Formation (the first unit of the Alpine cycle). The typical molasse characteristics suggest that the continental deposits of the Ciuanovita Formation accumulated in an intramontane depression. During Late Carboniferous and Early Permian times, the lateral shift of the depositional centre of the basin explains the numerous heteropic, partially juxtaposed Upper Paleozoic sequences in the Resita Basin (Stanoiu et al., 1996). The Giriște Member is the lowest sequence of the Lower Permian, dominated by lacustrine deposits. Its thickness (150-300m) decreases from the west (Lupac, Ciuanovita and Jițin areas) to the east, disappearing in the Secu area. This member consists of black pelites with sandstone and freshwater limestone interlayers; rare microconglomerates or thin coal layers also occur. The Lisava Member is represented by red beds (red, green and grey sandstones, clays, conglomerates), with freshwater limestone interbeds; rare volcanic tuff and tuffite interlayers occur westwards in Lupac area. Its thickness varies between 1000-1500m. The palaeontological data recorded within the middle part of the succession indicate an upper Lower Permian (“Autunian”) age, but there are no markers for younger ages (“Saxonian”–“Thuringian”?) recorded for the uppermost sequences of the Lisava Member (Antonescu, 1980).

Below the Lower Jurassic deposits in the Pui area, scarce outcrops of grey sandstones recovered close to the Cioclovina Cave yielded palynological assemblages ascribed to the Lower Permian (Stilla & Luta, 1968; Stilla, 1980).

The Variscan cycle of the Sirința Basin (Fig. 2) is represented by “Westphalian–Stephanian” clastics overlain by

Fig. 3 – Permian logs of the Apuseni Mountains, after Bleahu et al. (1979, 1981, 1985) and Dimitrescu et al. (1977).
the Lower Permian sediments of the Povalina Formation; this Permian sequence unconformably rests on the lower-middle “Stephanian” deposits, upper “Stephanian” being absent. The Povalina Formation includes black and grey shales (Starificata Member) overlain by red beds (Ielisova Member) (Stanoi & Stan, 1986). The Ielisova Member conformably overlies the Starificata Member in the central areas of the basin, and unconformably rests on the base-ment towards the marginal parts of the basin, mainly eastwards (Stanoi et al., 1996). The red beds are dominated by thick volcano sedimentary sequences, with local lacustrine limestones (Raileanu, 1953). Paleosol layers with caliche concretions often occur in the red bed sequence. The volcano-sedimentary dominance is very strong within in the western part of the Sirinia Basin, while to the east the sedimentation is more terrigenous. The black fine clastics of the Starificata Member are thin and fossiliferous.

Within the Presacina Basin, the Lower Permian deposits show both terrigenous (red beds) and volcaniclastic deposits (Codarcea, 1940; Nastaseanu et al., 1973; Nastaseanu, 1975, 1987) (Fig. 2).

Volcaniclastic, volcanic and terrigenous Permian sequences are exposed in various units of the central Apuseni Mountains (Fig. 3). The discovery of Lower Permian (“Autunian”) rocks is based on geometric and facies criteria; a possible “Saxonian” or even younger Permian age is indicated by silicified wood remains. The basal phyllicic sequence of the Permian corresponds to the black bituminous pelites and is overlain by red beds with tuffaceous interbeds. To the east, in the Bihor Mountains, the Lower Permian consists of sheared conglomerates; the Upper Permian sequence starts either with ignimbritic ryolites, or with breccias and fanglomerates sourced from the nearby metamorphic basement. The fanglomerates interfinger with coarse sandstones or fine shale sequences, as well as with ignimbritic ryolites and occasionally with basalts.

The stratigraphy of the Permo-Carboniferous continental deposits (Campelit Formation) of North Dobrogea includes a lower member of grey alluvial fan - alluvial plain sediments (loosely ascribed to the Carboniferous), unconformably overlying older metamorphic basement or Silurian-Lower Devonian sediments; the succession continues upsequence with red beds (0-90 m thick), overlain in turn by an upper volcanosedimentary member (Oaie, 1986; Seghe- di & Oaie, 1986, 1995 b; Seghedi et al., 1987) (Fig. 4).

In both the Moesian and Scythian Platforms, the Permian overlies older Paleozoic sequences (Fig. 5); the Permo-Triassic boundary is often difficult to trace, since both Permian and Triassic sediments show Germanic facies development. Evaporites occur in red beds devoid of carbonate sediments, suggesting a desert or coastal sabkha environment. In the Moesian Platform, red continental deposits prevail, but recent micropaleontological evidence suggests the presence of saline-marine, Lower Permian carbonate facies in some parts of the platform (Pana, 1997) (Figs 1, 5). The red beds are interbedded with products of bimodal volcanism, with rhyolitic and basaltic rocks prevailing in the Moesian Platform, and the basalt-trachyte association well represented in the eastern part of the Scythian Platform.

PALEONTOLOGICAL DATA

Paleontological data were recorded for the Resita and Pui basins of the Getic Nappe, the Sirinia Basin of the Danubian units, the Codru-Biharia Nappes of the Apuseni Mountains, and the Moesian and Scythian Platforms. No paleontologi-
cal evidence has been recorded so far for the Presacina Danubian Basin of the South Carpathians, the Bihar Autochthon or the Carapeli Basin in North Dobrogea.

The first palaeobotanical data from the Resita Basin were recorded by Stur (1870) and Telegd (1890), citing various Permain and Upper Carboniferous megafossil taxa. These taxa were later cited by Schreter (1910), Bitoianu (1973, 1974, 1987, 1988), Antonescu & Nastaseanu (1976) and Dragasan et al. (1997). Popa (1999) undertook a taxonomic revision and has established for the first time the majority of the Permain megafossil taxa of the Ciudanovita Formation: Calamites sp., Annularia cf. stellata, Annularia cf. sphenophyllides, Asterophyllites longifolius, Sphenophyllum oblongifolium, Autanita conferta, Autanita neumannii, Arnhardtia scheibeni, Ladevia suberosa, Gracilopteris bergeonii, Rhachyphyllum schenkkii, Neuropteris cf. cordata, Neuropteris sp., Odontopteris sp., Pecopteris polymorpha, ?Linopteris sp., Cyclopteris sp., Pecopteris cf. polymorpha, Taeniopteris sp., Astheopteris zelleri, Cordaites principalis, Walchia piniformis, Ernstedtia filiciformis, ?Otvicia sp., Carpolithes sp. A and Carpolithes sp. B. For the Girliste Member, the paleoflora are diverse and well preserved, represented by pteridophytes and conifers, recording some Late Stephanian taxa as well as Early Permain taxa. For the Lisava Member, the diversity of the flora decreases substantially, with only Walchiaaceae conifers occurring.

The palynological associations of the Permain deposits of the Resita Basin (Beju, 1970; Antonescu, 1980; Antonescu & Nastaseanu, 1976), record an early assemblage with *Florinites*, within the lowermost part of the Girliste Member (black sediments), and an upper assemblage with *Potonieisporites*, in the upper part of the Girliste Member and within the Lisava Member (red beds).

The first assemblage, with *Florinites*, is dominated by *Florinites* div. sp. (*F. circularis, F. cf. junior, F. sp.*, 60-90% of the assemblage), followed by *Potonieisporites novicus* and *P. bharadvajii* (8-15%) or *Reticulisporites facetus, Platyaccus papilionis, Alisporites* div. sp. (*A. aequus, A. saarensis, A. sp.*), *Pityosporites* sp., with less than 1-2% (Beju, 1970, in the Girliste area), Antonescu & Nastaseanu (1976) cited the same assemblage from Vidra Valley (Girliste Member), correlating the zone with the zone A1 of Doubuger (1974). They also cited S. Luta (in Antonescu & Nastaseanu, 1976) who described a Lower Permain assemblage with *Urospora kosankei, Raistrika microhorrida, Complexisporites chalomeri, Cordaitina rotata, C. uralensis, Florinites similis, F. volans, P. novicus, Vittatina simplex and Authorisporites verus* from the Secu-Lupac area.

The second assemblage, dominated by *Potonieisporites* div. sp. (*P. novicus, P. bharadvajii, 30-70%*), is also represented by *Florinites* div. sp. (*F. circularis, F. cf. junior, F. sp., 15-30%*), *Platyaccus papilionis, Alisporites* div. sp. (*A. aequus, A. saarensis, A. sp., 3-10%*), *Pityosporites* sp. (3-8%) and *Striatobiotites* sp. (Beju, 1970, in the Girliste zone). To this assemblage was added *Crucisaccites* sp. and *Vesicaspora wisoni* by Antonescu & Nastaseanu (1976, from Vidra Valley), these authors correlating the assemblage with the zone A2 of Doubuger, and later, (Antonescu, 1980) *Leiotrolites* sp., *Verrucosisporites* sp., cf. *Conicriticisporites* sp., *Halletheca reticulata* and cf. *Schantzspollenites* sp. in samples from the Jitin-Ciudanovita Veche Valleys. These assemblages were described from the basal or terminal sequences of the Girliste Member. Furthermore, from the median sequence of the Lisava Member (within the Permain red beds) Antonescu & Nastaseanu (1976) identified an assemblage with cf. *Punc-

Fig. 5 – Paleozoic deposits of the Moesian and Scythian Platforms, compiled from Paraschev (1979), Puna (1997) and Nega & Moroz (1987).
The megafauna recorded for the Codru-Biharia Nappe System are very scarce, represented only by rare rachises, which are impossible to identify. Silicified woods, collected from the red bed sequences, were described by Arăbu (1941) as Dadoxylon sp. Matyasi (1998) recorded silicified wood fragments identified by Popa (thanks to J. Galtier from Montpellier, France) as Dadoxylon of type III sensu Doubinger & Marguerit, 1975; they may represent a marker for a possible Late Permian age for the above-mentioned red-beds.

The palynological assemblage identified in the Codru Nappe is represented by Calamospora microsperga, Turrissporites pyramidalis, Verrucosporites sp., Flornites sp., Cycadopites sp., Vittatina sp., Azonotriletes cf. nodosus, Zonotriletes cf. ambilus, Azonotriletes sensilis, Stenozites compactus and S. cf. buliferos (Visarion & Dimitrescu, 1971). This assemblage is related to a Late Carboniferous - Early Permian time interval.

The presence of ichnogenus Planolites is suggested to support an Early Permian age of the bioturbated sandstones from the Apuseni Mountains, as this ichnogenus is confined to the Lower Permian (Rottlegendes) from the Thuringerwald, in Germany, and widespread within coeval formations in continental facies from the Sudets (Poland) and West Carpathians (Slovakia) (Brustur, 1986, 1997). Moreover, identification of the resting trace of a primitive aquatic amphibian of Diplocaulidae type (Hemundricichus patralius) within the bioturbated sandstones from the Finis Nappe (Padurea Craiului Mountains) establishes their correlation with the Lower Permian from Thuringerwald (Brustur, 1997).

Within the central-eastern part of the Moesian Platform, palaeontological data from wells Ileana, Hirlesti, Peretu, Peris and Aman indicate Early Permian marine environments (Pana, 1997). The author described Permian species of several foraminifer groups: Textularina, Milolida, Lagenerina, Stafellidae (nine species), Ozowainellidae (six species), Schubertellidae (three species), Neoschwageridae, Earlandinidae, Nodosinellidae, Corallinellidae, Dagmaritinae, Louizettinae, Medicollita sp. was also cited. Among the conodonts, Gynathodus defectus and Spalthognathodus whitei were identified in the Lower Permian, and Ancho- graniathus typicalis, Neopathodus divergens and N. profundus in the Upper Permian (Pana, 1997). As for ostracods, Pana found Healdia aff. axensis, Coronokirbia fimbrata for the Lower Permian and Permiana oblonga for the Upper Permian, among many other ostracod species (Sisaha, Bythocypris, Tomielle, Intella, Kirkbya, etc.).

Paleontological and palynological studies of the red beds from the Scythian Platform identified a phyllopoide association with Pseudoasteria, as well as spores indicating a Permian age (Kaption & Safarov, 1965, 1966). Geochronological data show ages of 290-248 Ma for the associated
volcanic rocks (Neaga & Moroz, 1987). However, as they are K-Ar ages, they represent cooling ages.

SEDIMENTOLOGY

Sedimentological studies on the Permian deposits of the South Carpathians and Apuseni Mountains are still in progress. The red-bed sequences from the Resita Basin (Lisava Member) and the Bihor Mountains show frequent cross-bedding, and their depositional features generally indicate alluvial to fluvial environments. The Lower Permian sequence of the Resita Basin coarsens upwards (Stănoiu et al., 1996).

In North Dobrogen, the lower terrigenous members in-

Fig. 6 — TAS diagrams for South Carpathian (Banat), Apuseni Mountain and Scythian Platform volcanics. Data compiled from papers of Stan (1984, 1987), Stan & Udrescu (1980), Stan et al., 1986 a, b, Moroz et al. (1996) and unpublished data of the authors. Multication discriminant diagrams of Greci and Turcovaia massifs from North Dobrogen (modified from Tatu, 1999 and Tatu & Seghedii, 1999).
clude alluvial-fans to alluvial plain clastic wedges, with fanglomerates dominating the coarse members and sandstone-siltstone cycles in the flood-plain deposits (Seghedi & Oaie, 1986). Red beds make up a thick, upward-coarsening sequence, deposited by a sandy braided river with fluctuating discharge, showing upward progradation of coarse, longitudinal bar deposits over sand dunes with planar cross-beds (Oaie, 1986). Sandstone petrography suggests that the onset of red-bed deposition was related to a major climatic change, switching from a warm and humid climate which prevailed during alluvial fan sedimentation, to an arid, dry climate, controlling red-bed accumulation. The thick volcaniclastic successions from the upper part of the Carapet Formation consist of superimposed cycles of pyroclastic deposits and coarse rhyolitic epiclastic sequences. Volcaniclastic rocks are dominated by large volumes of ignimbritic rhyolites (up to 1000 m in thickness), interbedded with airfall tuffs and base surge deposits, displaying the geometry of superimposed flow units (Seghedî et al., 1987). Vertical facies associations suggest that the style of deposition was controlled by intermittent volcanic eruptions. Sedimentological, petrographical and mineralogical evidence reveals that accumulation of the Carapet Formation was controlled by two major factors: a tectonically active source area, supplying metamorphic rocks, granites and earlier Paleozoic sediments and an active volcanic source, delivering large amounts offeldspars (mostly plagioclase feldspars) and volcanic lithoclasts (Seghedi & Oaie, 1986, 1994; Oaie, 1986; Seghedî et al., 1987).

In the eastern part of the Aluat-Sarata half-graben from the Scythian Platform, several fining-upwards cycles are superimposed in the 1685 m-thick column of Permian volcanosedimentary sequences pierced by borehole 1 Furmanovka (Moroz, 1984; Neagu & Moroz, 1987). In the western part of the half-graben, the distribution of the coarse fanglomerates suggests sedimentation controlled by activity along the northern boundary fault (Fig. 1). Fanglemerates interfinger and grade upwards to a finetbedded sequence of siltstones and mudstones, with thin, discontinuous layers of gypsum and anhydrite.

MAGMATISM

Permian magmatism was characterised by bimodal volcanism in the South Carpathians and Apuseni Mountains, as well as in both the Moesian and Scythian Platforms; volcanosedimentary sequences are typically developed in most areas, with the exception of the Resita Basin, where minor volcanism occurred. Granite intrusions took place only in the southern part of the Apuseni Mountains (High massif) (Tatu, 1998). In North Dobrogea a volcano-plutonic association with calcalkaline geochemistry is well represented, and the transition to alkaline magmatism probably occurred in the Late Permian, reflecting a change in geotectonic setting from compression to transtension.

Acid, rhyolitic volcanic and volcaniclastic deposits prevail in the Permian of the Danubian units (Banat). Rhyolitic and dacitic volcanics and volcaniclastic-epiclastic successions are variously interbedded with continental red beds, while thick bodies of ignimbritic rhyolites occur at the top of the Danubian sequences (Stanoiu & Stan, 1986; Stan et al., 1986 a, b). The thickness of the volcanic sequences increases westwards. The volcanism was bimodal (Fig. 6 a), as basic dykes intrude the red beds in some areas (Pop, 1997), and basic flows are exposed below red beds from the right bank of the Danube (Serbia) (Glucic, et al., 1997). Trachytic rocks occur southward (A. Glucic, oral comm., 1997). An intraplate setting is suggested for these rocks, based on geochemical data.

In the Codru Moma Mountains (western Apuseni), the volumes of both ignimbritic rhyolites and basic rocks decrease eastwards (Dimitrescu et al., 1977; Bleahu et al., 1979, 1981, 1985). Thin dykes and elongate rhyolitic bodies cutting the older basement (Bleahu et al., 1984) suggest that volcanic centres, aligned in a NNW-SSE direction, were located along the present western border of the massif. Several basic dykes, elongated in the same direction, may represent the feeder channels for the basic flows interbedded in the middle part of the Permian sequence. In the Bihor Mountains, the ignimbrite eruptions took place in the upper part of the Permian sequence (Dimitrescu et al., 1977). These acid rocks, mostly rhyolites, occur as pyroclastic flows and lava flows, but also as tuffs (Dimitrescu et al., 1973; Dimitrescu, 1975; Stan, 1983, 1984, 1987). Basic volcanic rocks include basalts and basalticandesites as pillow lavas, minor pyroclastic sequences and dykes (Bleahu et al., 1979, 1981,1985; Stan, 1987). Chemical analyses of the volcanic rocks reveal both the bimodality and the alkaline features of the basic rocks; the latter plot in the trachybasalt-trachyandesite field of the TAS diagram (Fig. 6b). The bimodal character of the volcanism is explained by having two distinct magma sources (Stan, 1987).

In North Dobrogea, the volcano-plutonic association with a calcalkaline geochemistry is related to crustal convergence at the end of the Hercynian Orogeny. For the volcanosedimentary member of the Carapet Formation, overall volcanological features indicate that the calcalkaline volcanism was subaerial, with calderas and plinian eruptions, and that volcanic products accumulated in both subaerial and subaqueous environments (fluvial and lacustrine) (Seghedî et al., 1987).

Field relationships indicate that two major phases of granite emplacement occurred in North Dobrogea, one
preceding and the other post-dating the deposition of the Carapetit Formation or at least its lower and middle members (Rotman, 1917; Miruta & Miruta, 1962). However, the age of the granites is not well constrained, since no reliable geochronological data exist. Younger generation intrusives thought to have been emplaced during the Early Permian represent a highly differentiated I-type calcalkaline suite, ranging from dioritic and gabbroic facies to leucogranites, but dominated by biotite-hornblende granodiorites and tonalites (Seghedi et al., 1994 a). The suite of the Greci Massif was emplaced in lower members of the Carapetit Formation as high level, high temperature intrusives, with both cross-cutting and partly conformable contacts, producing large contact-metamorphic aureoles and local garnet-pyroxene skarns. Rocks are rich in xenoliths of hornfels inferred to have been country rocks, as well as in various types of cognate xenoliths. The discriminant multivariate diagram (Fig. 6 d) suggests a mantle source for the basic end members and a deep or mid-crustal conditions for the genesis of granitic magma, as well as a syn-collisional geotectonic setting (Tatu & Seghedi, 1999).

In the Late Permian, products of alkaline, intraplate volcanism were emplaced along the crustal faults bordering North Dobrogea. They form both subvolcanic bodies (granites, syenites, rhyolites of the Turcovaia – Cirjelari lin-}

eament) in the south and basalt-trachyte dyke swarms in the north (Fig. 7) (Seghedi et al., 1994 b; Tatu & Teleman, 1997). For the Turcovaia massif, a crustal magma source is indicated by the "Sr" and "Sr values (Pop et al., 1985), suggesting that crustal anaxteis occurred in a continental, intraplate tectonic setting (Fig. 6 e) (Tatu, 1999). The geochemistry of Permian magmatic rocks suggests that this transition from calcalkaline to alkaline magmatism reflected a change in tectonic setting from compressional to (trans)extensional.

In the Moesian Platform, volcanic products belonging to a bimodal basalt-rhyolite association, interbedded at various levels of the Permo-Triassic sequence (Savu & Paraschiv, 1985) are obviously related to several episodes of extension and rifting of the Moesian Platform.

Products of a typical continental within-plate bimodal volcanism of the alkaline basalt-trachyte association accumulated in the two major half-grabens from the Scythian Platform (Aluat and Sarata – Tuzla). Alkaline basalt flows, trachytes, rhyolites and various pyroclastics and epiclastic products make up volcanic-volcaniclastic sequences that are up to 300 m thick, interbedded with thick, syn-rifting continental clastics. The Permian volcanism was subaerial and effusive, displaying a subalkaline geochemical signature (Moroz, 1984; Neaga & Moroz, 1987). Trachy-
basalts and trachyandesites prevail, most rocks showing a shoshonitic affinity (Fig. 6 c). Geochemical data suggest a great inhomogeneity of samples compared with the Codru-Moana volcanics. However, the intraplate setting is quite clear from the geological evidence.

CONCLUSIONS

The Permian deposits of Romania are mainly developed in continental facies, with molassic characteristics. The sedimentary record of most basins includes volcanosedimentary sequences. Red beds are the dominant facies, but the lower black shaly member of the Permian is present in the South Carpathians and Apuseni Mountains. Evaporitic sediments are associated with the red beds in both the Moesian and Scythian Platforms. In all areas, sedimentation took place mostly in alluvial fan, fluvial and lacustrine systems. Only in the northern part of the Moesian Platform do shallow-marine limestones occur. The South Carpathians (Getic Nappes and Dacianian units) yield by far the most fossiliferous Permian deposits in Romania, the fossil remains being represented by both flora (compressed macroflora, microflora) and fauna (ganoid fishes, ostracods, bivalves). The Apuseni Mountains include deposits yielding flora (silicified woods, microflora), while North Dobrogea has no fossils recorded so far. The Moesian and Scythian Platforms include faunal remains.

The Permian volcanism was bimodal. The basalt-rhyolite association typically occurs in the South Carpathians, the Apuseni Mountains and the Moesian Platform, while the basalt-trachyte association is found in North Dobrogea and the Scythian Platform.

An extensional tectonic setting, related to Late? Permi-

an rifting, is suggested by both field evidence and geo-

chemical features of the magmatic rocks from the South

Carpathians, Apuseni Mountains, Moesian and Scythian

Platforms. For North Dobrogea, both magmatic associations and their geochemical features illustrate a transition from a calcalkaline post-collisional setting to a transtensional setting related to the collapse of the overthickened Hercynian crust, which was displaced along major wrench faults.

Acknowledgements – The authors are very grateful to G. Cassinis and S. Yanev for extremely beneficial discussions about this topic during the common field trip in Romania, for encouragement to write this paper, as well as for revising, correcting and improving the manuscript. Special thanks go to the anonymous reviewer who improved the English of the paper.

REFERENCES

ANTEOIANU C., 1973. La flore du Carbonifère supérieur de la

Bucureşti: 115-127.

BITOIANU C. 1987. Consideratii palaeobotanice, petrografice si ge-

netice asupra haiului carbonifer din Banat. Contributii Botan-

ice, Gradina Botanica, Univ. Cluj-Napoca: 89-97.

BITOIANU C. 1988. La Macroflora stéphanienne de Lupac. Studia

Universitatis Babes-Bolyai, Geologia-Geographia, Cluj-

BLEAHI M. 1983. Correlation of Palaeozoic deposits in Apuseni

Mountains. V Congr. Carpatho-Balkan Geol. Assoc. (1961),

Bucharest, III: 1. (In Romanian).

BLEAHI M., PANIN S., TOMESCU C., STEFAN A., ISTRAVE G. & STEF-

ANESCUSC M., 1979. Geological map of Romania, scale 1:50,000,

BLEAHI M., PANIN S., TOMESCU C., MARINESCU F., STEFANESCU M.,

POPESCU A. & NICOLAE L., 1981. Geological map of Romania,

scale 1:50,000, Dr. Petru Groza sheet. Geol. Inst. Rom.,

Bucharest.

BLEAHI M., PANIN S., STEFANESCU M., STAN N., POPESCU A., TOM-

BLEAHI M., BORDEA J., MANTIA G., CIOPICA G., STEFAN A., POPE-

SCU A., MARINESCU F. & BORDEA S., 1985. Geological map of Ro-

mania, scale 1:50,000, Pietroasa sheet. Geol. Inst. Rom.,

Bucharest.

BORDEA S. & BORDEA J., 1982. Contribution to the knowledge of the

Permian formations in the western part of the Bihor Mountains.

stone Formation” (Permian) in the central zone of the Highs

BIEURT S., 1886. Ichnogenus Planolites nicholsoni, 1873 In For-

matiunea grăilei vermiculare din pevnial nu moldilor Apusenii
BRUIJST, T., 1997. Asupra unei urme de odluhi (Cuchchia) din Per-
miuianul Panzei de Finis: Heraudormichadium patruutiui n. sp.
(Mustii Padurea Craiului, Romania). St. cere. geol., Bucharest,
42: 29-42.

BUCUT, L., 1991. Proposition pour une nomenclature litohistogra-
phique formulée des dépôts paléozoïques et mésozoïques de la zone de Restia – Moldova Nouă (Carpații Meridionale, Romania).

CODARCEA, A., 1940. Vues nouvelles sur la tectonique du Banat et du

DIMITRESCU, R., 1975. Erupții perimene pe Monte Apuseni
323-326.

DIMITRESCU, R., 1988. Apuseni Mountains. In: Zoubek V. (ed.), Pre-
cretaceous in younger fold belts. Wiley & Sons, London: 665-
674.

DIMITRESCU, R., ICOAȘA N. & COVALI G., 1973. Permian quartz por-
phyries from the Codru Nappe in the Bihor-Giul Mountains. (In

DIMITRESCU, R., BLEAHU M. & LUPE M., 1977. Geological map of
Romania, scale 1:50.000, Avram Iancu sheet. Geol. Inst. Rom.,
Bucharest.

anatomique comparée de Schierendendalioeaves fennoscoine nov.
geo. nom. sp. du Permien de St Afrique (Aveyron, France): con-
sidérations taxinomiques et stratigraphiques. Geobios, 8 (1): 25-
59.

DRAGANAST, O., POPA M. & CIUPERCIANU M., 1997. The phy-
otositography and paleoecology of the Upper Palaeozoic de-
posits from South Carpathians. Acta Palaeontol. Romanae, I:
57-64.

EUFROSO, C., 1957. On the occurrence of the genus Palaeoschis
in the Autumnian floral assemblage from the Buziravita Valley, west of Restia (Banat). An. Com. Geol. Geof., Bucharest, XXX: 267-
270. (In Romanian).

GHERAS, N., 1937. Etude pétrographique et géologique de les
Rom., XIV: 1-78.

geologic al regiunii cuprinse în jurul Crăstilor Repede si Cârstea Ne-

First day excursion, cross section east of the Pacea stream. In: Gro-
blic A. (ed.), Guide for excursions in the East Serbav part of

KAPITAN V. H. & SAFAROV E.U., 1965. Esce raz o vozraste telsci pes-
cianich, podstatniusich iusovice otojenijii Molдавии. Izvestia
Akademii Nauk. Moldovskoi SSR, Chisinau, 8: 66-70.

KAPITAN V. H. & SAFAROV E. U., 1966. K stratigrafi permskih oto-
jenij Moldavii. Izvestia Akademii Nauk. Moldovskoi SSR,
Chisinau, 9: 80-87.

MIKUR, S., 1998. Mineralogical, geochemical and genetic study of
Uranium ores from the NW part of the Bihor Mountains. Un-

MIRAUTA O. & MIRAUTA E., 1962. Paleozoicul din partea sudică a
munților Macin (regiunea Cerna-Hâncea). D. S. Com. Geol.,
XLVI: 129-142.

MOROZ V. F., 1984. Verhnepaeseoziiske magmaticiske porodii,
metamotifti i rudoprovlenija nijevati Pripyatia. Stschina, Chisin-

MOROZ V., NEAGA V., UDRESCU C. & STOAN M., 1996. Rocile alca-
line ultrapotassice din sudul Basarabiei. An. Inst. Geol. Rom.,
69 (1): 137.

MURESAN M., 1970. Asupra prezentei Paleozoicii superior nemeta-
morfozat in facies continental in zona cristalino-mesozoica a

NASTASEANU S., 1975. General outlook on the Paleozoic of the
Danubian autochthonous (South Carpathians). An. Cons. Geol.

NASTASEANU S., 1987. Upper Paleozoic molasse deposits in the
Romanian South Carpathians. In: Flügel H., Sassi F. P. & Greccia
P. (eds), Pre-Viarcic and Viarcic events in the Alpine-
Brașovia: 371-378.

NASTASEANU S., STANIOI I. & BITOIUCAND C., 1973. Corelarea for-
mationilor molasului hercincian (Westbulgarian – Perianian) din partea vestică a Carpaților Meridionali. An. Inst. Geol., Bucharest,

NASTASEANU S., BERCII I., IANCU V. & HARTOPANU I., 1981. The
structure of the South Carpathians (Mehedinti-Banat area).
Guide Excursion B2. XII Cong. Carpații-Bălkan Geol. As-
soc., Guidebook Ser., Inst. Geol. Geophys., Bucharest, 22: 100
pp.

NEAGA V. I. & MOROZ V. F., 1987. Die jungpaleozoischen Ro-
setimente im Südtteil des Gebietes zwischen Dnestr und Prot. Z

OEAE G., 1986. Sedimentology of the pebbly red sandstone facies as-
socition within the Carpathian Formation, North Dobrogea. Rev.

PANA C., 1997. Studiol biostratigrafic al formationilor paleozoice
superoare din Platforma Munseaca. Unpublished PhD thesis,
Bucharest Univ.: 133 pp.

PARASCHIV D., 1979. The Moesian Platform and its hydrocarbons re-
serves. Romanian Academy Ed., Bucharest: 195 pp. (In Ro-
manian).

PATRULIU D., 1972. The Permian of the Bihor Autochthonous

Pavelescu I., 1953. Studiul geologic si petrografic al regiunii cen-
trale si de sud-est a munților Rezenteului. An. Com. Geol. Geof.,

Beograd: 9-10.

Isotopic Rb-Sr ages for establishing the emplacement sequence of
some granitoids of North Dobrogea. Proc. Rep. XIII Carpa-
to-Balkan Geol. Assoc., Krakow: 108-111.

POPA M., 1999. The Early Permian megafuna from the Restia Basin,
2: 47-57.

RABLANU G., 1953. Cercetari geologice in regiunea Sânnitita-Fata

ROTMAN D., 1917. Das Eruptivmassiv von Grece (Dobrogea, District

SANDULESCU M., 1983. Contribution à la connaissance des nappes
cratéacées des Monts de Manure (Carpații Orientale). D. S. Inst.

SANDULESCU M., RADULESCU D, KRAWITZER H., BOROS M., STANCIU
C., STEFANESCU M. & MUCI M., 1989. Sițelea geologică a Carpa-
256 pp.

SAYU H. & PARASCHIV D., 1985. Contributions to the study of pre-

SCHRETER Z., 1910. Beiträge zur Tektonik des südlichen Teiles des

